Linux/C++多线程实例学习十字路口车辆调度

 

实例要求:

有两条道路双向两个车道,即每条路每个方向只有一个车道,两条道路十字交叉。假设车辆只能向前直行,而不允许转弯和后退。如果有4辆车几乎同时到达这个十字路口,如图(a)所示;相互交叉地停下来,如图(b),此时4辆车都将不能继续向前,这是一个典型的死锁问题。从操作系统原理的资源分配观点,如果4辆车都想驶过十字路口,那么对资源的要求如下:

  • 向北行驶的车1需要象限a和b;
  • 向西行驶的车2需要象限b和c;
  • 向南行驶的车3需要象限c和d;
  • 向东行驶的车4需要象限d和a。

我们要实现十字路口交通的车辆同步问题,防止汽车在经过十字路口时产生死锁和饥饿。在我们的系统中,东西南北各个方向不断地有车辆经过十字路口(注意:不只有4辆),同一个方向的车辆依次排队通过十字路口。按照交通规则是右边车辆优先通行,如图(a)中,若只有car1、car2、car3,那么车辆通过十字路口的顺序是car3->car2->car1。

车辆通行总的规则

1)来自同一个方向多个车辆到达十字路口时,车辆靠右行驶,依次顺序通过;

2)有多个方向的车辆同时到达十字路口时,按照右边车辆优先通行规则,除非该车在十字路口等待时收到一个立即通行的信号;

3)避免产生死锁;

4)避免产生饥饿;

5)任何一个线程(车辆)不得采用单点调度策略;

6)由于使用AND型信号量机制会使线程(车辆)并发度降低且引起不公平(部分线程饥饿),本题不得使用AND型信号量机制,即在上图中车辆不能要求同时满足两个象限才能顺利通过,如南方车辆不能同时判断a和b是否有空。

 

解决方案

(可能存在一些不足,希望大家指出):

/**
*方法:使用四种线程代表四个方向的车,通过互斥锁和信号量实现题目里的要求。
*/
#include "../lib/myhead.h"
#include <pthread.h>
#include <queue>
#define SLEEP_MS(ms) usleep((ms)*1000) 
using std::queue;
enum Direction{
  NORTH = 1,
  EAST = 2,
  SOUTH = 3,
  WEST = 4
};
/* generate mutex and cond that are required */
template<typename T> struct NormalMutex{
  T val; //store some value that you can use
  bool flag; //control wether using cond
  pthread_mutex_t mutex;
  pthread_cond_t cond;
  NormalMutex():flag(false){
      int err = pthread_mutex_init(&mutex,nullptr);
      if(err!=0) 
          err_exit(err,"mutex init failed");
  }
  /* if you need cond, please set flag true */
  NormalMutex(bool flag):NormalMutex(){
      this->flag = flag;
      if(flag){
          int err = pthread_cond_init(&cond,nullptr);
          if(err!=0)
              err_exit(err,"cond init failed");
      }
  }
  ~NormalMutex(){
      pthread_mutex_destroy(&mutex);
      if(flag)
          pthread_cond_destroy(&cond);
  }
};
/* define the struct containing mutex and cond */
NormalMutex< queue<int> > q_north(true), q_south(true), q_west(true), q_east(true);
NormalMutex<bool> f_north(true), f_south(true), f_west(true), f_east(true);
NormalMutex<int> r_a, r_b, r_c, r_d;
/* define the integer to store the current car in four direction */
NormalMutex<long long> cur_n, cur_s, cur_e, cur_w;
/* define bool to make sure wether a direction has car */
NormalMutex<bool> isin_n, isin_s, isin_e, isin_w;
/* mark the remaining road*/
NormalMutex<int> resource;
/* mark the end of deadlock*/
NormalMutex<bool> dl_over(true);
/* signal four of few val to go firstly */
void init_car(){
  if(q_north.val.size()>0){ //if there are val waiting in the queue, pop one and let it go
      cur_n.val = q_north.val.front(); //pop
      q_north.val.pop();
      pthread_cond_broadcast(&q_north.cond); //let it go
  }
  if(q_south.val.size()>0){
      cur_s.val = q_south.val.front();
      q_south.val.pop();
      pthread_cond_broadcast(&q_south.cond);
  }
  if(q_west.val.size()>0){
      cur_w.val = q_west.val.front();
      q_west.val.pop();
      pthread_cond_broadcast(&q_west.cond);
  }
  if(q_east.val.size()>0){
      cur_e.val = q_east.val.front();
      q_east.val.pop();
      pthread_cond_broadcast(&q_east.cond);
  }
}
int enterTheCrossing(Direction dir,const long long &car_no){
  NormalMutex<int> *road;
  NormalMutex<bool> *isin;
  string direction;
  switch(dir){
      case NORTH:
          road = &r_c; isin = &isin_n; direction = "North"; break;
      case EAST:
          road = &r_b; isin = &isin_e; direction = "East"; break;
      case SOUTH:
            road = &r_a; isin = &isin_s; direction = "South"; break;
      case WEST:
          road = &r_d; isin = &isin_w; direction = "West"; break;
  }
  /* enter the crossing */
  pthread_mutex_lock(&(road->mutex));
  printf("car %lld from %s arrives at crossing\n",car_no,direction.c_str());
  /* things to do after lock the first road */
  isin->val = true; //mark that there is car in north direction
  pthread_mutex_lock(&resource.mutex);
  int tem_re = --resource.val; //let the resource minus one
  pthread_mutex_unlock(&resource.mutex); 
  return tem_re;
}
void detectDeadlock(Direction dir,int tem_re){
  if(tem_re!=0) return ;
  string direction;
  NormalMutex<int> *road;
  NormalMutex<bool> *first, *isin;
  switch(dir){
      case NORTH:
          direction = "East";  road = &r_c;isin = &isin_n; first = &f_east; break;
      case EAST:
          direction = "South"; road = &r_b;isin = &isin_e; first = &f_south; break;
      case SOUTH:
          direction = "West"; road = &r_a;isin = &isin_s; first = &f_west; break;
      case WEST:
          direction = "North"; road = &r_d;isin = &isin_w first = &f_north; break;
  }
  printf("DEADLOCK car jam detected. signal %s to go\n",direction.c_str());
  dl_over.val = false;
  /* deal with the deadlock by making left car go */
  pthread_mutex_unlock(&(road->mutex)); //release the road 
  isin->val = false; //let left car go first
  pthread_cond_signal(&(first->cond));// send the signal to left car
  /* wait the end of deadlock */
  pthread_mutex_lock(&dl_over.mutex);
  while(dl_over.val==false)
      pthread_cond_wait(&dl_over.cond,&dl_over.mutex);
  pthread_mutex_unlock(&dl_over.mutex);
  /* recover from deadlock */   
  pthread_mutex_lock(&(road->mutex)); 
  isin->val = true;
}
void judgeRight(Direction dir){
  NormalMutex<bool> *isin;
  NormalMutex<bool> *first;
  switch(dir){
      case NORTH:
          isin = &isin_w; first = &f_north; break;
      case EAST:
          isin = &isin_n; first = &f_east; break;
      case SOUTH:
          isin = &isin_e; first = &f_south; break;
      case WEST: 
          isin = &isin_s; first = &f_west; break;
  }
  /* juage that if car can go first */
  pthread_mutex_lock(&(first->mutex));
  while(isin->val)
      pthread_cond_wait(&(first->cond),&(first->mutex));
  pthread_mutex_unlock(&(first->mutex));
}
void gotoNextRoad(Direction dir,const long long & car_no){
  string direction;
  NormalMutex<int> *r1,*r2;
  NormalMutex<bool> *isin,*lisin,*first;
  switch(dir){
      case NORTH:
          r1 = &r_c; r2 = &r_d; isin = &isin_n;lisin = &isin_e; first = &f_east; direction = "North";      
          break; 
      case EAST:
          r1 = &r_b; r2 = &r_c; isin = &isin_e;lisin = &isin_s; first = &f_south; direction = "East";
          break;
      case SOUTH:
          r1 = &r_a; r2 = &r_b; isin = &isin_s;lisin = &isin_w; first = &f_west; direction = "South";
          break;
      case WEST:
          r1 = &r_d; r2 = &r_a; isin = &isin_w;lisin = &isin_n; first = &f_north; direction = "West";
          break;
  }
  /* go to next road */
  pthread_mutex_lock(&(r2->mutex));
  /* unlock the first road */    
  pthread_mutex_unlock(&(r1->mutex));
  printf("car %lld from %s leaving crossing\n",car_no,direction.c_str());
  /* things to do after unlocking the first road */    
  pthread_mutex_lock(&resource.mutex);
  resource.val++; //resource plus one
  pthread_mutex_unlock(&resource.mutex);
     /* out of the deadlock */
  dl_over.val = true;
  pthread_cond_signal(&dl_over.cond);
  /* unlock the second road */
  pthread_mutex_unlock(&(r2->mutex));
  isin->val = false; //the road don't have car
  /* if left direction has waiting car,let it go first*/
  pthread_mutex_lock(&(first->mutex));
  first->val = true; //let left car go first, if exist
  pthread_mutex_unlock(&(first->mutex));
  pthread_cond_signal(&first->cond); //send signal to left car
}
void doAfterGo(Direction dir){
  NormalMutex<queue<int> > *qu;
  NormalMutex<long long> *cur;
  switch(dir){
      case NORTH:
          qu = &q_north; cur = &cur_n; break;
      case EAST:
          qu = &q_east; cur = &cur_e; break;
      case SOUTH:
          qu = &q_south; cur = &cur_s; break;
      case WEST:
          qu = &q_west;  cur = &cur_w; break;
  }
  /* let the next car in the same direction to go */
  pthread_mutex_lock(&(qu->mutex));
  pthread_mutex_lock(&(cur->mutex)); 
  cur->val = qu->val.front(); //set next car to go
  qu->val.pop(); //leave the queue
  pthread_mutex_unlock(&(qu->mutex));
  pthread_mutex_unlock(&(cur->mutex));
  pthread_cond_broadcast(&(qu->cond));     
}
void * n_car(void *arg){
  /* get the car_no from arg*/
  long long car_no = reinterpret_cast<long long>(arg);
  /* block and wait the signal from init_car() or val over it */
  pthread_mutex_lock(&q_north.mutex); 
  while(cur_n.val != car_no){
      pthread_cond_wait(&q_north.cond,&q_north.mutex);
  }
  pthread_mutex_unlock(&q_north.mutex);
  int tem_re = enterTheCrossing(NORTH,car_no);
  detectDeadlock(NORTH,tem_re);
  judgeRight(NORTH);
  gotoNextRoad(NORTH,car_no);
  doAfterGo(NORTH);
  return nullptr;
}
/* the thread representing the car coming from east */
void * e_car(void *arg){
  /* get the car_no from arg*/
  long long car_no = reinterpret_cast<long long>(arg);
  pthread_mutex_lock(&q_east.mutex);
  while(cur_e.val != car_no){
      pthread_cond_wait(&q_east.cond,&q_east.mutex);
  }
  pthread_mutex_unlock(&q_east.mutex);
  int tem_re = enterTheCrossing(EAST,car_no);
  detectDeadlock(EAST,tem_re);
  judgeRight(EAST);
  gotoNextRoad(EAST,car_no);
  doAfterGo(EAST);
  return nullptr;
}
/* the thread representing the car from south */
void * s_car(void *arg){
  /* get the car_no from arg*/
  long long car_no = reinterpret_cast<long long>(arg);
  pthread_mutex_lock(&q_south.mutex);
  while(cur_s.val != car_no){
      pthread_cond_wait(&q_south.cond,&q_south.mutex);
  }
  pthread_mutex_unlock(&q_south.mutex);
  int tem_re = enterTheCrossing(SOUTH,car_no);
  detectDeadlock(SOUTH,tem_re);
  judgeRight(SOUTH);
  gotoNextRoad(SOUTH,car_no);
  doAfterGo(SOUTH);
  return nullptr;
}
/* the thread representing the car from west */
void * w_car(void *arg){
  /* get the car_no from arg*/
  long long car_no = reinterpret_cast<long long>(arg);
  pthread_mutex_lock(&q_west.mutex);
  while(cur_w.val != car_no){
      pthread_cond_wait(&q_west.cond,&q_west.mutex);
  }
  pthread_mutex_unlock(&q_west.mutex);
  int tem_re = enterTheCrossing(WEST,car_no);
  detectDeadlock(WEST,tem_re);
  judgeRight(WEST);
  gotoNextRoad(WEST,car_no);
  doAfterGo(WEST);
  return nullptr;
}
int main(int argc,char *argv[]){
  /* check the argv */
  if(argc!=2){
      cout<<"Please input the car stream."<<endl;
      exit(0);
  }
  /* initialize the variable */
  cur_n.val = cur_s.val = cur_e.val = cur_w.val = 0;
  isin_n.val = isin_s.val = isin_e.val = isin_w.val = false;
  resource.val = 4;
  int err = 0;
  int carNumber = strlen(argv[1]);
  pthread_t tids[carNumber+1];
  /* create all cars and push them into queue */
  for(int i=1;i<=carNumber;++i){
      switch(argv[1][i-1]){
          case 'n':
              q_north.val.push(i);
              err = pthread_create(&tids[i],nullptr,n_car,reinterpret_cast<void *>(i));
              if(err!=0)
                  err_exit(err,"can't create thread");
              break;
          case 'w':
              q_west.val.push(i);
              err = pthread_create(&tids[i],nullptr,w_car,reinterpret_cast<void *>(i));
              if(err!=0)
                  err_exit(err,"can't create thread");
              break;
          case 's':
              q_south.val.push(i);
              err = pthread_create(&tids[i],nullptr,s_car,reinterpret_cast<void *>(i));
              if(err!=0)
                  err_exit(err,"can't create thread");
              break;
          case 'e':
              q_east.val.push(i);
              err = pthread_create(&tids[i],nullptr,e_car,reinterpret_cast<void *>(i));
              if(err!=0)
                  err_exit(err,"can't create thread");
              break;
      }
  }
  /* wake up the car in front of queue */
  init_car();
  /* join threads */
  for(int i=1;i<=carNumber;++i){
      err = pthread_join(tids[i],nullptr);
      if(err!=0)
          err_exit(err,"can't join thread %d",i);
  }
  exit(0);
}

代码中使用到的error handler函数:

static void
err_doit(bool, int, const char *, va_list);
void
err_exit(int error, const char *fmt,...){
  va_list ap;
  va_start(ap,fmt);
  err_doit(true,error,fmt,ap);
  va_end(ap);
  exit(1);
}
static void
err_doit(bool errnoflag, int error, const char *fmt, va_list ap){
  char buf[MAXLINE];
  vsnprintf(buf,MAXLINE-1,fmt,ap);
  if(errnoflag)
      snprintf(buf+strlen(buf),MAXLINE-strlen(buf)-1,": %s",strerror(error));
  cerr<<buf<<endl;
}

以上就是Linux/C++多线程实例学习十字路口车辆调度的详细内容,更多关于Linux/C++多线程车辆调度的资料请关注编程宝库其它相关文章!

C语言是一种高级编程语言,其最重要的特点之一是它允许程序员使用函数来组织代码。函数是一组相关的指令的集合,可以在程序中多次调用。在 C语言中,函数由两部分组成的:函数定义和函数调用。函数定义是指定义函数的过程,函 ...