Python数据分析 Numpy 的使用方法

 

简介

使用 Python 进行数据分析时,比较常用的库有 Numpy、Pandas、Matplotlib,本篇文章就来说一下 Numpy 的使用方法,编辑器就使用上篇文章说过的 Jupyter。

Numpy 是一个Python扩展库,专门做科学计算,也是大部分 Python 科学计算库的基础,Numpy 提供了多维数组对象 ndarray,它是一系列同类型数据的集合,可以进行索引、切片、迭代等操作。

我们可以使用以下命令进行安装:

pip install numpy
# 或者
conda install numpy

 

多维数组创建

在Numpy中使用array()方法创建数组,传入列表或元组即可,例如:

创建一维数组,并指定数据类型为 int:

import numpy as np
np.array([1,2,3,4], dtype=int)  # 接收一个list作为参数

创建二维数组:

np.array([[1,2,3],[4,5,6]])

结果输出为:

array([[1, 2, 3],
[4, 5, 6]])

使用arange()函数创建连续的array,类似于 Python 中的range()函数:

np.arange(10)

使用 Numpy 的random模块创建随机数组:

# 创建2行3列取值范围为[0,1)的随机数组 
np.random.rand(2, 3)
# 创建2行3列的随机整数数组,取值范围为[5,20)
np.random.randint(5,20,size=(2,3))

其他方法:

np.ones()函数:创建一个元素值全为1的数组,接收一个list或tuple作为参数,如np.ones([2, 3])可以创建一个2行3列的数组。np.zeros()函数:创建一个元素值全为0的数组,接收一个list或者tuple作为参数,使用同上。np.full()函数:创建一个填充指定数值的数组,第一个参数是list或tuple,第2个参数是需要填充的数值,如np.full((2, 3), 5)可以创建一个2行3列的数组,所有元素都填充为5。

当然,还有一些其他的方法创建指定格式 Numpy 数组,用处不多,就不一一介绍了。

 

数组的数据类型

Numpy 支持非常多的数据类型,可以通过 Numpy 数组对象的dtype属性查看数组的数据类型:

a = np.array([[1,2,3],[4,5,6]])
a.dtype

 

数组维度

可以通过对象的ndim或shape属性,来查看数据维度:

  • ndim属性:直接返回维度值。
  • shape属性:返回一个元组,元组的长度即代表数组的维度,元组每一个属性代表对应的维度的元素个数。
a = np.array([[1,2,3],[4,5,6]])
a.ndim
a.shape

关于Python数据分析 Numpy 的使用方法的文章就介绍至此,更多相关Numpy 的使用内容请搜索编程宝库以前的文章,希望以后支持编程宝库

 1.改变数组形状数组的shape属性返回一个元组,包括维度以及每个轴的元素数量,Numpy 还提供了一个reshape()方法,它可以改变数组的形状,返回一个新的数组。例如: ...