python中numpy矩阵的零填充的示例代码

 

需求:

对于图像处理中的一些过程,我需要对读取的numpy矩阵进行size的扩充,比如原本是(4,6)的矩阵,现在需要上下左右各扩充3行,且为了不影响数值计算,都用0填充。

比如下图,我有一个4x5大小的全1矩阵,但是现在我要在四周都加上3行的0来扩充大小,最后扩充完还要对原区域进行操作。

方法:

想到了几种方法,记录一下。

 

一、再new一个更大的所需要的矩阵大小

    a = np.ones((4,5))    #假设原矩阵是4x5的全1矩阵
  print(a.shape)        
  
  b_pad = np.zeros((4 + 6, 5 + 6))    #要四周扩充3行,所以宽高都要加6
  h,w = b.shape
  print(b.shape)        #(10,11)
  b[3:h-3,3:w-3] = a    #再把原矩阵放到相应位置
  print(b)

  #如果要对原数值一一进行操作,可以定位到各元素
  for i in range(3,h-3):        
      for j in range(3,w-3):
          b[i][j] = 2
  print(b)

这个方法简单粗暴,逻辑上比较好理解,但是会消耗内存空间

 

二、pad函数

其实numpy已经封装了一个函数,就是pad

    a = np.ones((4,5))
  print(a.shape)
  b = np.pad(a,3,'constant')    #对a,上下左右各扩充3行,constant缺省,默认为0
  print(b)
  print(b.shape)

  #如果只要左上角扩充的话
  c = np.pad(a,(3,0),'constant')
  print(c)
  print(c.shape)

 

其他想法

还有两种想法,但我没实践过。一个是 二维转成一维,然后用list在每一组的前后可以加0,用append连接,最后再转成二维。这样子的话,0想放在哪里就可以自己定了。 还有一种是用torch.nn,在pytorch中有对于卷积的0填充padding。不过需要把numpy转成tensor张量,最后再转回来,比较麻烦。

关于python中numpy矩阵的零填充的示例代码的文章就介绍至此,更多相关numpy矩阵零填充内容请搜索编程宝库以前的文章,希望以后支持编程宝库

 实战场景Python 工程师在日常的工作中,经常会碰到解析和处理PDF文件的情况,实战中需求主要分为如下情况:提取 PDF 中的文字将 PDF 中每页转换为图片word 转换为PDFPDF ...