PythonNumPy数组索引的示例详解

 

前言

NumPy(Numerical Python的缩写)是一个开源的Python科学计算库。使用NumPy,就可以很自然地使用数组和矩阵。NumPy包含很多实用的数学函数,涵盖线性代数运算、傅里叶变换和随机数生成等功能。本文主要介绍Python NumPy 数组索引及访问数组元素。

 

1、访问数组元素

数组索引与访问数组元素相同。

您可以通过引用其索引号来访问数组元素。

NumPy数组中的索引以0开头,这意味着第一个元素的索引为0,第二个元素的索引为1等。

例如:

从以下数组中获取第一个元素:

import numpy as np
arr = np.array([1, 3, 3, 4])
print(arr[0])
#  1

例如:

从以下数组中获取第二个元素。

import numpy as np

arr = np.array([1, 3, 3, 4])

print(arr[1])

# 3

例如:

从以下数组中获取第三和第四个元素并将其添加。

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[2] + arr[3])

# 7

 

2、访问 2-D Arrays(数组)

要访问二维数组中的元素,我们可以使用逗号分隔的整数来表示元素的维数和索引。

例如:

在第一个昏暗处访问第二个元素:

import numpy as np

arr = np.array([[1,12,3,4,5], [6,7,8,9,10]])

print('2nd element on 1st dim: ', arr[0, 1])

# 2nd element on 1st dim:  12

例如:

进入第二个暗处的第五个元素:

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,110]])

print('5th element on 2nd dim: ', arr[1, 4])

#  5th element on 2nd dim:  110

 

3、访问 3-D Arrays(数组)

要访问3-D数组中的元素,我们可以使用逗号分隔的整数来表示元素的尺寸和索引。

例如:

访问第一个数组的第二个数组的第三个元素:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

print(arr[0, 1, 2])

示例说明

arr[0, 1, 2]输出的值为6.

这就是为什么:

第一个数字表示第一维,它包含两个数组:

[[1、2、3],[4、5、6]]

和:

[[7、8, 9],[10,11,12]]

因为我们选择了0,所以剩下的第一个数组是:

[[1、2、3],[4 ,5,6]]

第二个数字代表第二维,它还包含两个数组:

[1、2、3]

和:

[4、5、6]

,因为我们选择了1,剩下第二个数组:

[4,5,6]

第三个数字代表第三个维度,其中包含三个值:

4

5

6

由于我们选择了2,因此我们以第三个维度结束 值:

6

 

4、负索引

使用负索引从头开始访问数组。

例如:

打印第二个暗处的最后一个元素:

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,110]])

print('Last element from 2nd dim: ', arr[1, -1])

# Last element from 2nd dim:  110

参考资料:https://www.cjavapy.com/article/1040/

关于Python NumPy 数组索引的文章就介绍至此,更多相关Python NumPy 数组索引内容请搜索编程宝库以前的文章,希望以后支持编程宝库

作用anext() 是 Python 3.10 版本中的一个新函数。它在等待时从异步迭代器返回下一项,如果给定并且迭代器已用尽,则返回默认值。这是 next() 内置的异步变体,行为类似。语法awa ...